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For the purpose of eliminating restriction, the Poisson-Boltzmann (PB) equation, which represents the potential 
of the electrical double layer of spherical micelles, can be solved analytically only under the lower potential condi-
tion, a kind of iterative method in functional analysis theory has been used. The radius of the spherical particle can 
be obtained from the diagram of the second iterative solution of the potential versus the distance from the center of 
the particle. The influences of the concentration of the ions, the charge number of ions, the aggregation number of 
the particle, the dielectric constant of solvent and the temperature of system on the radius also have been studied.  
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Introduction 

It is well known, according to the diffuse double 
layer model of Gouy and Chapman (GC model), that the 
electric potential in the electrolyte solution surrounding 
a colloid particle is governed by the so-called PB equa-
tion. The equation, which is used in a plane interface 
between a particle and its solution, can be solved ana-
lytically.1,2 But with a spherical micelle, its PB equation 
is a second order nonlinear differential one, which can 
not be solved analytically by traditional methods; only 
the numerical solution has been given so far.3 However, 
in most of surfactant solutions, the particles are spheri-
cal and the distribution of charges in their electrical dif-
fuse layer plays a significant role in calculating or 
studying the many properties of these systems, such as 
the adsorption of interface, the state and structures of 
interfacial films between phases, as well as the diffusion, 
effusion, stability and rheology.4 The distribution also 
forms the basis of the Derjaguin-Landau-Verwey- 
Overbeek (DLVO) theory.4-7 Therefore, to get the ana-
lytical solution of the PB equation accurately for a 
spherical particle is very important. The conventional 
method uses the low potential approximation, which is 
also called Debye and H�ckel (DH) approximation, to 
change the equation into a second order linear differen-
tial equation and solve it.8 But at a higher potential, this 
approximate method becomes invalid. To get over the 
difficulty brought about by a high potential, many re-
vising methods have been presented.9-14 Unfortunately, 
the shortage has not been gotten rid of up to now.  

In the authors’ previous work, the PB equation under 
general potential condition has been worked out by us-
ing the iterative method in functional analysis theory. 
The first and the second order analytical expressions 
have been obtained on the basis of GC model.15 The 
results tested from the points of mathematics and 
physical chemistry show that this iterative method is 
superior to the conventional ones because it has thor-
oughly gotten rid of the restriction of the low poten-
tial.16 The present work is, based on the results of the 
second order iterative solution of the potential, to work 
out the radius of the spherical micelle and find out the 
relations of the radius with each of the parameters 
which have the main influence on the radius, such as the 
concentration of the ions, the charge of the particle and 
so on. 

Results and discussion  

Iterative method in functional theory 

For a set C composed of functions (ψ φ  ) 
which are continuous and exist at least second-order 
derivate in an open interval (a, b), where a and b are 
two different real numbers, define a norm17,18  

|| || max | ( ) |

        � �

r

a r b

ψ ψ
  (1) 

Then it is easy to prove that any functions in this set 
can satisfy the following axioms of norm. That is, if 
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Cψ φ∈ , one will have17,18 

|| ||� 0ψ ; 

|| � ||� || || �|| ||ψ φ ψ φ ; 

|| || | ||| ||λψ λ ψ  ( λ  is a real). 

According to the functional analysis theory, the set C 
forms a Banach space B. Considering an operator P̂  
acting on the space B, the result of the operator P̂  op-
erating on the function ψ  in the space B gives an iden-
tical ψ . That is18 

P̂ψ ψ   (2) 

And if the operator P̂  also satisfies Lipschitz condi-
tion  

ˆ|| ||� || � ||PPψ φ α ψ φ�  ( , Bψ φ∈ ) (3) 

where α  is called Lipschitz constant, then beginning 
with any function 0ψ  (where 0 Bψ ∈ ), one can get  

1
ˆ( )� ( ) n nr P rψ ψ+ (n 0, 1, 2, �� (4) 

and as n → ∞ , 

( ) ( )n r rψ ψ→   (5) 

Here ( )rψ  is the only solution of equation18 

ˆ( )� ( )r P rψ ψ   (6) 

And ( )n rψ is generally called the approximate solution 
of nth-order iteration of Eq. (4). 

Solution of the PB equation under general conditions 
by using the iterative method 

According to the GC model, the PB equation de-
scribing the relation between the electrical potential 
ψ and the distance from the center of the spherical par-
ticle r is 

02
2

1 d d
( ) �� [exp(� )�exp( )]

d d

en z ze ze
r

r r kT kT
ψ

ε

 

(in the electrical double layer)      (7) 
 

and 2 � 0rψ∇  (inside the particle)    ( 7′ ) 
 

with the boundary conditions: 0ψ →  (in the bulk) and 
Rψ ψ  (at the particle surface). 

In Eq. (7), 0,  ,  ,  ,   e n z kε and T  represent the ele-
mentary charge, the concentrations of the ions far from 
the particle (number/m3), the valance of the ions, the 

the dielectric constant of the surrounding solution, the 
Boltzmann’s constant and the absolute temperature of 
the system, respectively. For the sake of convenience, 
the two points that ε  is not changing with r  and that 
the ion pair is a symmetric z-z type are considered in 
this paper. 

Eq. (7) is a second-order nonlinear differential equa-
tion of ψ  and cannot be solved by a usual method. But 
if DH approximation ze kTψ �  is introduced, the 
analytical solution of the equation can be reached as  

( ) exp( )
A

r r
r

ψ κ−   (8) 

where A  is the integral constant and 2 2 2
02 /e n zκ  

3 2 2
02�10 /kT e N cz kTε ε is called Debye reciprocal 

length in which 0N  represents the Avogadro’s number 
and c , the molar concentration of ion (mol�L 1).   

Using Eq. (8) as the zero order approximate solution 

0 ( )rψ of the potential, and setting the operator P̂  from 
the general BP equation [Eq. (7)] as  

1 2
2

0

1 d dˆ sin h [ ( )]
2 d d

kT
P r

ze en z r r r

ε
�  (9) 

where sin h 1 is the anti-operator of the hyperbolic sine 
operator sin h, then from Eqs. (8), (9) and (4) one can 
get the first order iterative approximate solution of Eq. 
(7) 
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and the second-order iterative approximate solution: 

2 1

2
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Here 0/F ze kTψ  is a dimensionless function of r. As 

0 ( )rψ  is one of the solutions of ( )rψ , so are 

1( )rψ and 2 ( )rψ . But since the operator P̂  is set up 
strictly based on PB equation, both 1( )rψ and 2 ( )rψ  
are also different from 0 ( )rψ  in that they have elimi-
nated the restriction of the condition ze kTψ� .  

Generally speaking, though it is true in principle that 
the choice of a 0 ( )r Bψ ∈  is arbitrary according to the 
functional analysis theory, the convergence velocity of 
functions ( )n rψ  (n 0, 1, 2, ) to the precise solu-
tion ( )rψ  varies with different 0 ( )rψ and P̂ . The 
experience of practical calculation shows that if they are 
selected correctly, only the first or the second order it-
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erative solution is accurate enough for most chemical 
problems. Any over elaborate work is not needed. 17  

The examination of the validity of this iterative 
method is done mathematically by substituting the low 
potential condition ze kTψ �  into 1( )rψ and 2 ( )rψ , 
and both can reduce to 0 ( )rψ  in the limit of low po-
tential.15 It is also done with the use of the flat plate 
model, which has both DH approximate solution and 
precise one.4 And the results show that the data from 
this iterative method are much closer than those from 
the DH approximation to the precise solution.16  

Solutions and the radius of the sphere micelle 

In the above equations the integral constant is de-
termined as exp( )RA R Rψ κ  for DH approximation by 
using the boundary condition at r R  in Eq. (7). Here 
R is the radius and Rψ is the surface potential of particle. 
Though each of them R  and Rψ has its clear physical 
meaning, there is not any method to determine them so 
far. Therefore, A  remains an undetermined constant.  

However, if the infinite dilution of the particle con-
dition is used, it can be determined by means of ele-
mentary physics anyway.4 

/ /A Q mzeε ε   (12) 

where Q and m represent the total charge and the ag-
gregation number of the micelle, respectively. As a re-
sult, by using condition Eq. (12) one can get such a dia-
gram of the curves of 0 ( )rψ , 1( )rψ and 2 ( )rψ  as 
Figure 1 (A) for any fixed case of z, m, c, T and ε .  

Figure 1 (A) shows that for a fixed case of z, m, c, T 
and ε , at lower potentials the three curves are coinci-
dent. It further confirms that the DH approximation is 
reasonable at low potentials. On the other hand, the use 
of the iterative method in the functional theory to solve 
the potential of a spherical micelle is also favorable. 

At the higher potentials, 2 ( )rψ 1( )rψ 0 ( )rψ . 
This phenomenon is rational since 0 ( )rψ is the rough-
est approximate function and the others are more accu-

rate than it to the precise potential ( )rψ  in the set 
composed of all the solutions ( )n rψ . Under the low 
potential, the distance from the center of the particle r  
is long; the radius of the particle R is so small in com-
parison with the distance that it can be neglected and the 
particle can be treated as a point charge. So all iterative 
solutions can get together under the low potential. But at 
a higher potential (or shorter distance), the real situation 
of the particle is far away from the point charge model 
of the DH approximation [Eq. (8) with Eq. (12) as the 
integral constant] and the radius cannot be neglected. 
For that reason, they get apart from each other. Fur-
thermore, since all three are the approximate solutions 
of the potential ( )rψ , the operator P̂  is set up strictly 
based on PB equation, and the DH approximation 

0 ( )rψ  is the basic iterative function, the other two so-
lutions 1( )rψ  and 2 ( )rψ  must be more accurate than 

0 ( )rψ , and 2 ( )rψ  more accurate than 1( )rψ  ac-
cording to the functional theory.17  

The phenomenon is also interesting in which this 
method can give us the information of the radius of the 
particle. In Figure 1 (A), 1( )rψ is almost similar to 

0 ( )rψ in shape except that the former is lower than the 
latter at a shorter distance. For 2 ( )rψ , as the r  gets 
shorter from a long distance, it grows up as 0 ( )rψ and 

1( )rψ do, then becomes slower than both of them up to 
the distance R , where it reaches its maximum Rψ . So 
we can define R  as the radius and Rψ , the surface 
potential of the particle. 

The validity of this definition can be proved from the 
following considerations: 

Firstly, the PB equation of the spherical particle for 
the GC model is a universal one and it must include the 
information of the radius of the particle. Therefore, ac-
cording to the functional analysis theory, despite that we 
begin with the point model, the radius should appear 
when the number of iterative order goes to a specific  
level. 

 

 

Figure 1  (A) The diagram of the potential of a double layer of a spherical micelle ψ  vs. the distance from the center of the particle r 
for any fixed case of z, m, c, T, and ε : 0ψ (the right), 1ψ  (the middle) and 2ψ  (the left); (B) The radius of a spherical micelle R  
determined from the potential 2ψ  vs. the distance r  for a special case z 1, m 50, c 0.01 mol L 1, T 298.6 K and ε 6.954
10 10 C V 1 m 1.
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Secondly, according to the GC model, the charges of 
particle are concentrated on the surface and as a result, 
Eq. (7) should have a sole maximum value at the parti-
cle surface. From the viewpoint of physical chemistry, 
for a spherical micelle, the polarization vector P ε E 
(where E is the electric field density vector) should also 
be the maximum when r R which can be further con-
firmed by the following example. For a spherical parti-
cle composed of cationic surfactants C12H25N (CH3)3

 

each carrying a positive charge, the net charge distribu-
tion on this surfactant ion calculated with the quantum 
chemistry theory19 shows that most of the charge  
( 0.91354e) is concentrated on the head of the mole-
cule. This molecule charge distribution means that most 
of the particle charges are on its surface and almost no 
polarization takes place in the particle (in Figure 2). The 
curve expressed by 2 ( )rψ  having a sole maximum 
value just coincides with above phenomena. 

 

Figure 2  Distribution of charge on the cationic surfactant 
C12H25N (CH3)3. 

Thirdly, the range of R is fit for the micelle radius. 
For example, for a particle composed by 50 ions each 
carrying a basic positive charge in the T 298.16 K, c
0.01 mol•L 1 aqueous solution, R is about 13 nm [Fig-
ure 1 (B)]. This length is reasonable for the micelle ra-
dius.  

Factors influencing the radius 

Besides the distance from the center of the particle, 
the expression of 2 ( )rψ  also includes the parameters c, 
z, m, T and ε , so it can be predicted that the radius R 
must be influenced at some level by these parameters. 
Figures 3 7 illustrate all the influences and the corre-
sponding expressions of the fitting curve for each pa-
rameter are listed in Table 1. In most cases, the system 
under study is at room temperature; the concentration, 
in the range 10 5 10-1 mol•L 1; the aggregation num-
ber, in the range 20 200; the charge number of ion, 
between 1 and 3 and the solvent, water. Therefore, ex- 
cept for the spatial study, for all Figures, the following 
numerical values have been used: z 1, m 50, c 0.01 
mol L 1, T 298.16 K, � �H2O�0 78.54 8.854   
10 12 C•V 1•m 1 6.954 10 12 C•V 1•m 1. In Figure 
4, for the convenience of making the curve, the 
non-integral charge numbers have been used. And in 
Figure 7, besides that of water, the other relative dielec-
tric constants ε  (293.16 K): glycerin (56.2), methanol 
(31.2), alcohol (27.8), ethyl ether (4.30), carbon tetra-
halide (2.24), and hexane (1.80) have been used. 

The results in Figures 3—7 and Table 1 show that, in 

the studying range of the parameters, the radius reduces 
as the ion concentration and the ion valance in the solu-
tion grow up. The probable reason is that the exclusive 
force between ions and particle will grow up with the 
increase of the two parameters, and as a result of the 
exclusion, the volume of the particle will be reduced. 
And with the same reason, the increases of the aggrega-
tive number of particle, the dielectric constants  

 

Figure 3  Influence of the concentration of ions on the radius of 
the particle R in the case z 1, m 50, T 298.16 K and ε
6.954 10 10 C•V 1•m 1. 

 

Figure 4  Influence of charge number of ion z on the radius of 
the particle R in the case m 50, c 0.01 mol L 1, T 298.16 K 
and ε 6.954×10 10 C•V 1•m 1. 

 

Figure 5  Influence of the aggregation number of particle m on 
the radius of the particle R in the case z 1, c 0.01 mol•L 1, 
T 298.16 K and ε 6.954 10 10 C•V 1•m 1. 
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Figure 6  Influence of the temperature of system T on the radius 
of the particle R in the case z 1, m 50, c 0.001 mol•L 1, T
298.16 K and ε 6.954 10 10 C•V 1•m 1. 

 

Figure 7  Influence of the different dielectric constant ε  on 
the radius of the particle R in the case: z 1, m 50, c 0.001 
mol•L 1 and T 298.16 K. 

Table 1  Relations of the radius of a spherical micelle (R) with some parameters 

Parameters            Relation of R (m) with each factor                           Correlation coefficient (r2)  

c 
z 
m 
T 
ε  

R 2.817exp( lg c/1.241) 
R 5.059 16.36exp( z/1.372) 
R 4.352 5.135lg m 
R 9.82 0.01000T 
R 3.788 0.3433 ε 5.291 10 3

�
2 3.021 10 5

�
3  

0.9991 

0.9992 

0.9984 
1.0000 
0.9970 

 
of the solvent and the system temperature will reduce 
the exclusive force and make the change of radius con-
trary. All absolute value of the correlation coefficients in 
Table 1 being over 0.99 illustrates that the fitting ex-
pressions for the parameters are dependable. 

Conclusions 

(1) To solve the potential PB equation of electric 
diffuse double layer of a spherical micelle, an iterative 
method in functional analysis theory has been used.  
With the help of the method the general analytical solu 
tion for the potential under general potential condition 
has been obtained. 

(2) From the diagram of 2 ( )rψ , the radius of the 
micelle can be defined and the factors influencing the 
scale of the radius have been studied. 

(3) This method can be not only used successfully 
for resolving the PB equation of the diffuse double elec-
tric layer of the spherical micelle analytically, which has 
been puzzling people so far, and presenting a method of 
obtaining the radius of the particle, but also used as a 
useful and simple means in further studying of the 
DLVO theory7,20 and in dealing with many other physi-
cal chemistry problems. 
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